Two-strategy Reinforcement Evolutionary Algorithm Using Data-mining Based Crossover Strategy with Tsk-type Fuzzy Controllers
نویسندگان
چکیده
This paper proposes a two-strategy reinforcement evolutionary algorithm using data-mining crossover strategy (TSR-EADCS) with a TSK-type fuzzy controller (TFC) for solving various control problems. The purpose of the R-EADCS is not only to improve the design of traditional reinforcement signal but also to determine the suitable rules in a TFC and the suitable groups that are selected to perform crossover operation. Therefore, this paper proposes a two-strategy reinforcement signal to improve the performance of the traditional reinforcement signal design and uses the data mining technique to find suitable fuzzy rules and groups for evolution. The proposed TSR-EADCS consists of both structure and parameter learning. In structure learning, the TSR-EADCS uses the self adaptive method to determine the suitability of TFC models between different numbers of fuzzy rules. In parameter learning, the TSR-EADCS uses the data-mining crossover strategy which is based on frequent pattern growth to select the suitable groups that are used to perform crossover operation. Illustrative examples are conducted to show the performance and applicability of the TSR-EADCS.
منابع مشابه
Reinforcement evolutionary learning using data mining algorithm with TSK-type fuzzy controllers
Reinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selection. To this end, the proposed R-ELDMA entails both structure and parameter learning. In structure ...
متن کاملReinforcement Hybrid Evolutionary Learning for TSK-Type Neuro-Fuzzy Controller Design
This paper proposes a recurrent TSK-type neuro-fuzzy controller (TNFC) with reinforcement hybrid evolutionary learning algorithm (R-HELA). The proposed R-HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA) to perform the structure/parameter learning for constructing the TNFC dynamically. The evolution of a population consists of three majo...
متن کاملTwo-Strategy reinforcement group cooperation based symbiotic evolution for TSK-type fuzzy controller design
This paper proposes a TSK-type fuzzy controller (TFC) with a two-strategy reinforcement group cooperation based symbiotic evolution (TSR-GCSE) for solving various control problems. The TSR-GCSE proposes the two-strategy reinforcement (TSR) signal designed to improve the performance of the traditional reinforcement signal designed. Moreover, the TSR-GCSE is different from the traditional symbiot...
متن کاملDevelopment of an evolutionary fuzzy expert system for estimating future behavior of stock price
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system” (DEFE...
متن کاملEvolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control
A hybrid method combining an evolutionary search strategy, interval mathematics and pole assignment-based closed-loop control synthesis is proposed to design a robust TSK fuzzy controller. The design objective is to minimize the number of linear controllers associated with rule conclusions and tune the triangular-shaped membership function parameters of a fuzzy controller to satisfy stability a...
متن کامل